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The boundary value problems of shallow shells theory can provisionally be separated into 
two kinds, internal (analysis of domes, beamless ceilings), and external boundary value 

problems (analysis of shells weakened by holes, i.e. problems of stress concentration). 

Both these directions have extensive bibliographies (see II]. say). 
Given below is a formulation bf the fundamental boundary value problems from rather 

unique positions, similar in idea to the Koslov-Muskhelishvili conceptions in the plane 
problem of elasticity theory. Representations of the solutions of the boundary value prob- 

lems are written down in series for simply and multiply connected domains. 

1. The correctly written representations of solutions of boundary value problems in 
shell theory should satisfy the following conditions: (a) functions governing the displace- 

ments, stress resultants, and moments in the shell should be expressed in terms of the 
general solutions of the fundamental equations or be represented as series in the com- 

plete systems of solutions, (b) the static conditions as a whole should be satisfied, i. e. 

conditions at infinity (if the shell is assumed unbounded or the equilibrium conditions 
of the whole shell if the shell is bounded), (c) conditions of uniqueness of the displace- 
ments (if there are no dislocations according to the meaning of the problem, (d) finally. 
in some problems it is necessary to impose conditions of periodicity of the displacements 

or stress resultants. For example, in the tension of a cylindrical shell weakened by a 

large quantity of periodically disposed identical holes, the stress resultants should satisfy 
the appropriate periodicity conditions. 

The general solution of the fundamental equations of technical shallow shell theory 

is given in @] ; we shall consider it known. The stress and deflection functions are defined 

in terms of the general solution F (z, 5) as follows: 

u (5, y) = F, (z, C), w @A Y) = c*Fz (z, Q, F (z, t;), = F, + iFz 

z_ a (x’riy), g=!+-iy). ;,==vec;-u) p V/r’ (4.1) 

Here U (5, y) and w (5, y) are the stress and deflection functions, E, p and h the 
Young’s modulus, Poisson’s ratio, and shell thickness, respectively, R, RI are the corre- 

sponding radii of curvature of the middle surface, 5, y are Cartesian coordinates, and 
a is the characteristic linear dimension. 

All the stress resultant and moments acting in the shell can be expressed in terms of 
the function F (z, 5). To do this, it is merely necessary to go over to the variables z, 5 

in the known formulas. We have 
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where N,, N, and N,, are the stress resultants in the middle surface, M,, M, and 

M xy are the corresponding moments in the shell. 

Analogous formulas can obviously be written for the transverse stress resultants also. 

Let us turn to the determination of the tangential displacements u and u. From 

Hooke’s law connecting the stresses and strains in the shell we have 

N, - M, + 2iLV’,, = - 4Gh 
pVT a 
----= (u - iv) - 2Ghe* T F? = 

= (1.3) 

Integrating (1.3) with respect to z we obtain 
* 

p v/i ~FI 
4Gh(u-iu)==~f(~)-44a~-2Gh~~~~~dz(1.4) 

20 

The question therefore rests upon the determination of the analytic function f (5). 
Applying a procedure p], we obtain 

(1 + p)a2Ref’(5) = i (I ; ‘) ’ -j$ + (4. + Ct) EF, (2, 5) + 

4; (l.- a)ERe{-&( F&z} (1.5) 

It is more convenient to rewrite this latter expression as z 

(1+p)alRef’(:)=~eIm{-~~-C28F+~$Fdz+~rFdb} 
211 

Just one function F (2, b) figures in the right side of (1.6). 
‘” (1.6) 

It is now necessary to take account of the fact that F (z, 6) is a solution of the funda- 

mental equation. According to p], the following representations hold 

F (2, 5) = vo (z) ch (5 - 50) + $0 (5) ch (z - zo) - (1.7) 

Here (ok (z) and -4h (5) are arbitrary analytic functions of their arguments, and the 
kernels Gk (2 - t, 5 - T) are known function. 

Substituting (1.7) into the right side of (1.6). we obtain after transformations 

(1 + cl) a2 Re f’ (5) = - * 8 Im P+h (4 + W5) (1.8) 

Restoring f’ (5) and then integrating it, we find 
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Rhi VI + 1~ 

(1 - “) 1/n) 
(1.9) 

co io 
The function ?# (z) in (1.9) is defined by the relationship $ (z) = cp (2) [4]. 
By virtue of (1.9) and (1’.4) the final expression of the tangential displacements can 

be renresented as Y Z 
I 3 

h(u-iiu)=I/t(\ [31(5)--m(-i5)]d5--~FF1+2i!:Fzd~~ (1.10) 
. 

where 

h-Eh 
Rh 

(1-z) y’l2(1 -by 
F,= ReF(z, c), F, ==ImF(z, 5) 

The function F (z, [) in (1.10) is given by the representation (1.7) ; the functions 
$r (5) and cpi (z) are arbitrary analytic functions in (1.7). Let us examine the static 

conditions. The principal stress resultant vector in the middle surface acting along the 
arbitrary arc L on the shell surface is defined by the formula 

(1.11) 

Furthermore, the projection of the principal vector of the forces along L on the nor- 

L 
Here L) = Eh3 / 12 (1 - p”) is the cylindrical stiffness. This latter expression can 

be represented in the more conveneient form 

2. In the case of the first boundary value problem we shall assume that the stress 
resultants and moments 3111 (2.1) 

n;, = N,O(s), A-$ := XS”(S). 121, = n,,“(S), (1” -= Qn -1. &, ns _= Q”(S) 

are given on the domain boundary I_, whereN,and NS.are the normal and shear compo- 

nents of the stress resultant in the middle surface, M, and Q* are the normal component 
of the bending moment and the generalized, in the Kirchhoff sense, transverse stress 
resultant, and s is the arc coordinate along the boundary. 

The boundary conditions (2.1) can be represented in the following equivalent form: 

where 

where F” (1, <) is some particular solution of the inhomogeneous equation (which 
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corresponds either to some loading at infinity if the shell is unbounded, or to a transverse 
loading on the shell), F is the solution of the fundamental homogeneous equation of 
shaflow she11 theory fz]. 

The boundary conditions (‘2.2f CIR be expressed in terms of the boundary values of the 
function F, as follows: 

where 

The functions fr” (s) and fa” (s) are given in f2.2). 
In the case of the second fundamental problem, we give the tangential displacements 

U, V, the deflection w , and the normal derivative on L . The boundary conditions can 

evident& be represented as follows : 

u - iv = u” (s) - iv” (s), 
aw I Bw awe (s-1 

as-Ean” as -- iw,“(s) (2.5) 

Utilizing the formulas for the tangential displacements (1.10>. we reduce condition 

(2.5) to 
T(S) WA 

s 
~~l(~)-Yjcpl(- it)ldc - w% _t 2i \ F,t’(s)ds --Is(s) (2.G) 

+oisf id;S) 

Here n is the direction of the exterior normal to L. 

Several analogous boundary value problems exist besides the two mentioned, 
The question therefore reduces to seeking the solution of the fundamental equation 

F (.% 5) from certain boundary conditions on the domain boundary, The representation 
F (2, E) should hence satisfy the correctness conditions. 

8, Zf the domain is simply connected and finite, the solution of boundary value prob- 
lems I and 2 can be represented as series in same complete system af partial solutions. 

For example (3.1) 

li;” fz* Cf = 5 I-%l(ff*(& P) -i- 4%*@?%* tz, 5) i- Rb~a (.& 5) -I- B,$*\fi:l* (2, 6)) 
?,+i 

Here A,, .A,*, B, and B,!!’ are constants to be determined from the boundary 
conditions ; the functions cfi,, QR*, YB and yR* have been constructed in g], 

If the domain is circular, we use a polar coordinate representation of the solution @]; 
if the domain is not a circle, one of the approximate methods, say the method of boundary 
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collocation, can be utilized upon compliance with the boundary condftions. 

4. In solving the boundary value problem for an infinite domain it is necessary to 
have the solution which damps at infinity. A construction of such solutions is given below. 

Let us introduce the function 

G (z, Q) = Go (2. 5) + (& + +) (:I (2, 5) 

where Go and Grare the kernels in (1.7). We represent the general solution F (z, 5) as 

F (z, 5) = aoG (2 - 20, E - CO) -t 4 (20 - z, Co- 5)-k s G(z- t, C - 50) x 
z-2 

+ tG(z, - z, r- 5)Yl(--qdZ (4.2) 

Here PO, pr, y. and vr are arbitrary analytic functions of their arguments,ao and a, 
are arbitrary constants. 

The representation,(4.2) reflects the following property of the solution of the funda- 
mental equation. If F (z, 5) is a solution, the functions F (5, z), F (-2, -c), 
F(--5, - 2) are also solutions. 

Let us introduce four kinds of solutions 

@n(z, f) = 

=~,,~~~o(~-~o)}=~G(~-~o.:-5o)+~G(~-~.i-e,)~o(t-;,)~f 

z0 Y (z, r;) = 

= 6, t {pl (zo -- z)} = F G (zo - z, Co - 5) + f G (f - z, 50 - I;)tLl(ZO - t)dt 
L 

a-)>* (2, 5) = 

=J%,,{~o(~-50)) -$G(z--09 C-E.)+! G(z--0, t-Wo(+Co)dr 
I;0 

y* (z, 5) = (4.3) 

= D:, z {VI (Co - 5)) = +- G (zo - z, 50 - 5) + f G (zo - z, IJ - 5) ~~(5o-W~ 
r 

The general solution of the fundamental equation of shallow shell theory is evidently 

F (z, 5) = Q, (z, 5) + ‘3f (~7 z;) + a* (z, 5) + Y.! (z, 5) (4.4) 
Let us consider particular solutions which we shall call solutions of the first kind 

@,,(z - zo. 5 - 50) = 
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Here I? (y) is the Euler gamma-function; we shall here assume that Re y > 0. 
According to @J, the function rZ (z, c) can be represented as 

f:(s, 6)= i $&(5) =r+Y$o$m,(5) = G(L g) (4.6) 
k=O 

where gk and Ok are lnown functions, for example, for a cylindrical shell (8 = 1) we 
have 

@h (fs) = g- (4.7) 

Therefore, only the function mV (z, f) needs to be determined. 

Realizing the first of formulas (4, S), taking account of (4.3) and (4. S), we find (*) 

For jr = - n, (n = 1~ 2...) , formula (4.9) becomes 

Formulas (4.9) and (4.10) yield an analytic continuation of integrals (4.5) into the 
whole plane of the parameter y. 

For the particular case of 8 = 1 (cylindrical shell), the system of regular solutions 

of the fust kind yields 

Starting from the solutions (4.9)* (4.8) obtained above, we construct solutions which 
decrease at infinity. 

Let us define single-valued solutions of logarithmic type in terms of regular solutions 
of the first kind as follows: 

(4.12) 

l ) We set zo = co = 0 everywhere below. 
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Realizing the first equality in (4.1’2), we find after an appropriate passage to the limit 

% (2, %) = - G (z, C) ln CC + %” (z, C) (4. 13) 

P7 

!i-&O(z, &==e”“~ +(;;I) [Z~Ok(~)+~$JZ)J, ~(kil)=-c+i: f 
h_=-0 i-z1 

$(I) = - c (C is the Euler constant). 

It follows from (4.13) that Qr (z, 5) h as a logarithmic singularity at the point 

z = 5 = 0. The factor in the logarithm is the kernel, and the function Qr” (z, 5) is 

analytic at any finite point Z, 5. 
The second logarithmic solution is defined by virtue of (4.12) and (4. 8) as 

Qs(z, 5) ==Q,(--Z, -5) (4.14) 

Let us designate as regular solutions of the second kind functions expressed as follows 

in terms of solutions of logarithmic type : 

zi ‘yz, Q== (-qy;- l)“Q,(z, C), p(z, Q== (-l)“i&- lj”Q,(z.Q 

pqz, 5) = %$y’(- 2, - Q, Zien)(z, 5) = %$-“)(- Z, - 5) (4.15) 

It is clear that solutions thus defined are single-valued and have a pole of order n at 

the point z = 5 = 0 . 
From (4.15) and (4.13) we find 

The following equality holds 

%;-@ (z, 5) = 2; -?I) (C., z) 

The remaining solutions of the second kind are defined in (4.15). 

For the cylindrical shell the solutions(4.15) become 

(4.U) 

where K, ,(t) is the hlacdonald cylinder function. 
(4.18) 

In this case the logarithmic solutions (4.12) are expressed by the formulas 

O1 (z, 5) =-- eZi%-o (2 -v’zt;). Qs (z, 5) = e Z i Ko (2 v’%) (4.19) 

The order of decrease of the solutions (4.18),(4.19) as p = 1/x” +!I’ increases is 
found by utilizing the asymptotic formulas for K, (x) for large 1x1 >, IV 1 (see [5] ). 
We have 

Z:-J1’ (Z, 5) 2 (p)“‘exf, { ; ;G 1 (i :- 9, 2) (4.20) 
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As should have been expected [6], the least decay holds along the asymptotic line 

(Y = 0). 
Solutions, which decay at infinity and are defined in terms of the logarithmic solutions 

as follows : 
Ty’ (2, 5) == .$a, (z, Q, Yy)(z, 5) -1 7y (5, z) (4.2 I) 

I‘i-“’ (2, 5) = Ty”‘(- 2, - 5). Ti-n’(z , 5) = zy’(- 5 - ! z) 

are useful in solving the boundary value problems for an unbounded domain, 
Let us use the notation 

(jp+fl 
u j,n 

PA = dzpap 
zy’(z, 5) (i= 1, 2,3,4) (4.22) 

Let us find the representation of the function z&,t in polar coordinates. To do this 
we write cc 

ti”;Yq == 2 Fk,,i (j, I/z) eike, ‘12 
k=-_co (4.23) 

Since by virtue of (4.21) 

F;‘,;(2, l/z-&= F,,:“(l,~z~, F~,~(3,1/~)-(--)h.+l?+qF~~(l,1/~) 

F;$(4, v’z) = (- l)k+p+q F,;;“(l, J/Z) (4.24) 

then only the functions 
F;;; (1, J@-) = F;$ ( vrz, 

are needed in the definition. 

The logarithmic solution Cr (z, 5) (4.13) can also be represented as follows: 

Q, (z, 5) = - G (z, 5) ln ‘fzz+ Q”l (z, 5) (4.25) 

k=O 

k-0 k=O 

c ak.7~ = ‘ii, S’ ‘“Zk, 22~1 = “h.. s + b,_,, s, ‘zh.+l, 2s = a,, s -f- b,, S-I, ‘-zii / t, ZS+I = b,,, 

b = b, _1 = 0 -1,s , (s, k = 0, I, . ..) 

The quantities aktS and & are defined in @]. 

Differentiating (4.25) according to (4.21) and (4.22) and then representing the expres- 
sion obtained in polar coordinates taking account of the easily deducible formula 

i 2: c,~B,s 5 = g e_ikn m’nFel) ~~~;,~.~;~, (fx)k--= -a (4.26) 
h-=0 s=o k=l s=o 

we obtain 

F;;; (m) = F;;,“+p (vzj (4.27) 
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Here 

( ~/z:)k-2j-z _ 

j=o 

_; ,(yma”” 
I!r(/i-e-‘l) I ‘jmtk, j+q 

j=O 

+ + (C;+k+n-l, jiq f c;+q-l, j+f.+n)] 

(k=O, 1, 2, . ..)) 

F.-,k,n ( m) p min ‘5’ ‘-‘) (--!)j+‘zI:. ;z:; k-&q-l ( fZg)k-‘G -2 _ 

j=4 

: 

‘jtn, jtktq (, Ir 
In c-- 4(i+U+Q,(j+k+Q 

2 

I 
+ 2 (‘j*+n-~, itktq + “;+k+q ~1, jtn 4 

po, 2, 2, *..) 

Therefore, (4.23), (4.24) and (4,27) define expansions of the functions (4.22) in polar 

coordinates, i.e. the solutions Z’-) (z, f;) and their different derivatives. 

6, Now, let us examine representations of solutions of the boundary value problems 
for a multiply connected domain, If B is a finite multiply connected domain whose 

complement &, BZ, . . . , B, are bounded continua, and B, contains the infinite point, 

then the solution F (z, g) can be sought in the form 

-IT;@, 5) = i (&@,,(z - zo, 5 - 50) + A**@,*, (2 - so, 1; - 50) + 
n=O 

-I- B,Y,(z - 201 f - CO) --I- &a*yn* (2 ‘- Zo, f; - 50)) + i 5 x (5.1) 
j=l n=f_i 

x {Al’,‘, Tp (2 - Zj, c - Gj) f A$:n T(2-“) (Z -- Zi, 5 - cj) + AgL Tgn’ (Z - Zjr 

c -- &) + At: Ti-n’ (z - q, 5 - 5.)) I 

where the points (zo, co) E B,,‘(z~, 51) E Bj, (j = 1, 2, . . . . m). Constants in 

(5. I,) are defined from the boundary conditions of the appropriate boundary value prob- 

lem. 
If B is an unbounded multiply connected domain containing the infinite point, then 

the first sum in (5.1) vanishes, i.e. 
n,zA *=B n * .,B*=O TL 

In the case of the periodic problem (an unbounded shell with a periodic system of 
holes), the representation (5.1) simplifies somewhat. 

We have CC 00 

F (2,~ I= 2 2 (,43~:-j’(z - z,, 5 - 5,) + @yi-j’(z - z,, 5 - 5,) i- 
~~---co j=o 

+ AcjT$-j’ (z - z,, 5 - 5,) + A$T$-” (2 - z,,, 5 - 5,)) 

where 5, = .zo + nw, and w is the fundamental period. 

F.2) 
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We find 
AElj = A,,j (k=i,2,3,4) (5.3) 

from the condition of perk&city of the stresses under the assumption of a possibility of 
changSng the order of summation. 

Introducing the periodic functions (the series on the right side always converges since 

the functions i”iefi decay exponentially at infinity) 

l-$j’(z, 5) = i 1I’:-j’ (2 -- z,, 5 - 5,) (5.4) 
Tl=--co 

we obtain the final representation 
(5.5) 

JJ (~$5) = z (A,,jIl:-“(z, I;) + Ag,,jI’Ii-‘)(z, 5) + A,,jfli-“(z, 5) + A4,jn$-‘(Zr5)) 
f=O 

We analogously obtain a representation of the solution in the case of a doubly-periodic 
problem 

(5.6) 

F(z, 5) 5 5 (L!,,~v~(;-‘)(z~ 5) + A~,~vI~-‘(z, 5) + A,,jm$-‘)(z, 5) + A,,jmi-“(z,%)] 
j=O 

where the doubly-critic functions rn{-j’ (z, 5) are 

$-j) (z, 5) = 121 T1-j’ (z - %,Tlr 5 - 5m.n) (i = 2,2,3,ct; i = 0, 1;2,. ..,) 

m ,n 

6. Let us examine the case of a simply-connected abounded domain (an unbounded 
shell with a hole) in more detail. In this case we evidently have 

(fi.1) 

F (z, 5) = 5 (14 l,nT$-n)(~, c).+ -&,nT~-n)(~, 5)+AJ’$n)(~, 5) + &nT~n)t~,QJ 
?I==0 

According to equalities (4. Z), (4.23), the expression (6.1) can be represented in polar 
coordinates as follows : 

The quantfties Fi$ are given in (4.27). 

A 
If the domain and the loading are symmetric with respect to the coordinate axes, then 

-A 1,n -.- z,n = Aa,n = A,,, = d n from the symmetry eonditions,and the repre- 

sentation (6.1) simplifies. We have 

P (z, 5) = 5 J,,Tr-‘Q (2, C) (KS) 
n=* 

TM) (2, 5) 5 ,$-a (2, C) + T(;“’ (5, 2) -+ T:+) (- z, - p) f TY) (- 5, - 2) 

We have the representation (6.2) in polar coordinates, where 
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For example, for the solution F (2, ;) we have the representation 

F (z, <) = F,,, (l/zx) -f- 2 5 Fir0 (vz) cos2,% 
h-1 

((i.3) 

If the problem is inversely symmetric relative to thes- and y-axes, then 

-.ll,,L := -.I:,,,,, . A,,, ~~ /l,!,l,r L11,,2 =-- - _l,,,, ~- _i,, 

We obtain 

F (2, 6) = 2 A,%7’( “‘(z, 5) 
Ii_ ‘, 

(6.(i) 

(K 7) 

T( ,I) (z, 5) = Ti-“) (z, c) - T;+ (5, z) + Tim”’ (__ z, _ j) _. T[m“’ (_ 5, _ q 

The expansion in polar coordinates remains valid, and its coefficients are 

I;;;,, (I,[/=<) =- [ 1 + (- l)i;;P!4] 5 ,jy,, (Fi:’ _ Fir;) 
7,=-_0 

(6.8) 

For example, the solution F (z? 5) is represented by the formula 

F (z, 5) --_ 2i 5 F;i;, Sill 2120 
h’-:l 

(6.9) 

7, Only conditions for the uniqueness of the tangential displacements require special 

consideration. 
If we have the representations (6.1) in mind, then the uniqueness condition yields the 

relationship 

i (*i,,,,- Js.,,) ~. i .$ (&,7,- X ,.,I) (7.1) 
,‘lO 1L 0 

In particular, it follows from (7.1) that the uniqueness conditions of the tangential 
displacements are satisfied automatically for the symmetric (A,,, = Az,~ -I As,,l=-- 

= J&) and inversely symmetric (Al,,% = As., = -A,,, - AJtn) prob- 

lems. 
The above-mentioned representations and their expressions in polar coordinates can 

be utilized directly to solve in series various boundary value problems of shallow shell 

theory. 
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The analysis of the problem formulated and studied in D, 23 is resumed. The conditions 
which the distribution of the resistivity of the working substance in a channel with finite 

electrodes must satisfy in order for the current in the external circuit to reach its maxi- 
mum are investigated. The resistivity is assumed to be a tensor function of the coordi- 

nates; the tensor is assumed to be symmetric and its principal values to be piecewise- 
continuously differentiable functions. 

1. Formulation of the problem, We consider a flat channel (Fig. 1) of 
width 26 whose walls are dielectric everywhere except for two segments of equal length 

Y 

* 

2h facing each other at opposite sides of the channel; 

6 these segments are made of an ideally conductive mate- 

-A I h 
-1) rial. The conductive segments are connected through 

OFi5 
the load R. 

The working substance characterized by the resistivity 
tensor P,, (5, y) which varies from point to point is 

moving in the channel at the velocity v (V(y), 0, 0) . 
Fig. 1 We assume that this center is symmetric; let pl (z, y)? 

pZ (5, y) be its principal values and CL, 8 the corre- 
sponding principal axes. Denoting the angle between the positive direction of the 5- 
axis and the a-axis ( l ) by y (z, 9) , we can find the Cartesian components of the ten- 

sor l’,, from the formulas 
(I.11 

Pxlr == pux = ‘IS (PI - pz) sin 2r 

Imposition of a magnetic field H (0, 0, - B (x)) causes an electric current of den- 
sity j to flow in the channel (the Cartesian coordinates of this vector will be denoted 

*) We assume that the a- and B-axes form a right-handed system. 


